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ABSTRACT

An incident plane wave is scattered from a surface which is corrugated in one dimen-
sion and which is described by an infinite number of periodically spaced semi-infinite parallel
plates (comb) having soft boundary conditions. An additional plate is placed between each
set of adjacent plates, thus dividing the periodicity interval into two regions, one of which
doesn't differ in its properties from the region above the plates, while the second region is
inhomogeneously filled. The latter means that this region differs in wavenumber and density
from the surrounding media. Both the wavenumber and the density are here assumed to be
constant. The solutions of the Helmholtz equation are assumed to be upgoing plane waves
above the plates and, between the plates, standing waves along the periodicity direction and
downgoing waves along the plate slots. The solutions have unknown amplitude coefficients.
Continuity of pressure and velocity across the common boundary yield linear equations re-
lating the amplitudes in the various regions. The latter are shown to be similar to the residue
series of integrals of certain meromorphic functions. The amplitudes are expressed as values
or residues of these functions, which are explicitly constructed. The two examples treated
in detail are (a) zero-thickness plates with arbitrary incident angle, and (b) arbitrarily thick
(inhomogeneous) plates at normal incidence.

PROBLEM STATUS

This is a final report on one phase of the problem; work on other phases is continuing.
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SCATTERING FROM A PERIODIC CORRUGATED SURFACE

Part 1-Semi-Infinite Inhomogeneously Filled Plates with Soft Boundaries

1. INTRODUCTION

The problem considered in this report is the calculation of the scattered and diffracted
fields when a plane wave is incident on a one-dimensional periodically corrugated surface.
The surface consists of periodically spaced, infinitesimally thin, parallel plates extending to
infinity in the remaining two dimensions of the problem. Each period is further divided by a
parallel plate into two regions which are, respectively, free and inhomogeneously filled. The
inhomogeneity is expressed by having different wavenumbers and densities in the various
regions. Soft boundary conditions are considered on the plates. In a sense this report is a
generalization of the classic diffraction problem of plane waves incident on thin, periodically
spaced, parallel plates, first solved by Carlson and Heins (1) using Wiener-Hopf methods, and
by Berz (2) and Whitehead (3) using a residue calculus method from complex function
theory.

The basic formalism of the problem is presented in Sec. 2. The velocity potential solu-
tions 4 of the scalar Helmholtz equation are written in the various geometric regions of the
problem. Above the plates, 4. is expressed as an incident plane wave plus a scattered field
consisting of a superposition of upgoing plane waves, and evanescent waves whose propaga-
tion directions are given by the grating equation. The solutions in both free and inhomogen-
eously filled plate wells are expressed as standing waves in the direction of periodicity, and
propagating or evanescent waves in the other dimension. Continuity of pressure and velocity
across the common boundary yield linear equations relating the amplitude coefficients.
Green's theorem is used to derive a flux conservation relationship between the reflection and
transmission coefficients. The general mathematical procedure is to relate these sets of linear
equations to the residue series of integrals of certain constructed meromorphic functions.
The amplitude coefficients are thus related to residues or values of the functions. The most
general sets of linear equations (for arbitrary incidence and arbitrary inhomogeneity) are de-
rived, but this most general set cannot be solved by the present methods. Instead, two
special cases are considered.

In Sec. 3 the case of an arbitrary angle of incidence and no inhomogeneity (zero-
thickness plates) is considered. This is just the Carlson-Heins problem and is solved using a
slightly different residue calculus method from that of Berz (2) in order to illustrate the
general procedure.
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Also in Sec. 3 the case of normal angle of incidence and arbitrary inhomogeneity
(arbitrarily thick* plates) is treated. It is necessary to modify the residue calculus technique
by an iterative procedure due to Mittra et al. (4) in order to satisfy a necessary symmetry
property of the meromorphic function. In both cases the amplitudes of the various waves
are related to the values and residues of the constructed function, and the behavior of the
fields near a plate edge (edge condition) is demonstrated.

The summary and conclusions are contained in Sec. 4. This report is restricted to the
analytic problems involved; the numerical evaluation of the reflection and transmission
coefficients will be presented elsewhere.

There are also four appendices. Appendix A covers the properties of the infinite
products used to construct the functions. The edge condition is derived in App. B and is re-
lated to techniques used in the iterative procedure in App. C. Finally, in App. D the
asymptotic algebraic behavior of the residues of the functions is discussed.

2. BASIC FORMALISM

Scalar Wave Function

We wish to solve the two-dimensional Helmholtz equation for a plane wave incident at
an angle Oi on an infinite number of periodically spaced (period 2Q) half planes which are
alternately filled with an inhomogeneous material. These planes are illustrated in Fig. 1.
The x direction is the direction of periodicity, and the planes extend to z = - and y = ±00

(perpendicular to the plane of the figure). The separation between adjacent inhomogeneous
planes is 2a. The Helmholtz equation is* *

(a2 a2

( 2 a2 )0 (2.1)

where the wavenumber k = 27r/X (X is the wavelength), and 4 is the scalar wave function or
velocity potential given by (see Fig. 1)

*The word "thick" as used in this report is not the conventional usage, i.e., it does not mean that I am dis-
cussing a single plate having parallel sides and one end closed (the other open to infinity). "Thick" refers
to the region between two infinitesimally thin and adjacent plates (region C in Fig. 1) which is filled with
a material having density and wavenumber parameter values which differ from those in the surrounding
media (regions A and B). A limiting case of these parameter values yields a thick plate in the conventional
sense (see case for t 0 1 in Sec. 3 and App. C).

**e ict is suppressed throughout.
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Fig. 1-Plane wave incident at an angle Oi on an infinite grating of

parallel plates which extends to z = -H and y = +00 (perpendicular
to the plane of the paper). Region C, bounded by two infinites-
imally thin plates, is filled with a material having different density

and wavenumber values from those of the surrounding media
(regions A and B). The wavenumber kc is defined by kC = Nk, and
the density PC by Pc = ppA. The discrete scattering angles are
On, the periodicity is 22, 2a is the distance between empty plates,
and the parameter t is defined by t Q/a. Region A is z > 0, and
regions B and C are z < 0; 0 is the phase lag for the wavefront
striking x = 2Q as opposed to that striking x = 0.

4'A (x,z), z > 0 (region A)

4.'(xZ) = z 6 0 (region B where (2.2)
1PB (X,z),

-a+2m2 6 x < a+2mk; m = 0,+1,_2 .. )

In addition in region C where z < 0 and a+2mQ < x 6 2(m+1)Q-a (m = 0,±1,±2,...), . is given
by 4.c which satisfies

( 2 a
2 2

-+- -+kkC) iC(XZ)=0. (2.3)

Thus region C is filled with a constant inhomogeneity represented by the fact that kc # k.
It is convenient to define the dimensionless quantity N by kc = Nk. (The case of no in-
homogeneity will of course follow by setting N = 1 in our results.)

In addition to the soft boundary condition (satisfied by 4 B or tic, as appropriate), we
have

iP(xo~z) = 0 for z 6 0 and x0 = ±a+2mV (m = 0,(12.24...). (2.4)
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The function 4 satisfies the following restrictions:

a. 4 and V 4 are finite in each subregion, except at the sharp edges of the plates
where4 = 0 (r( 1 12 )±c) and IV4'I = 0(r-(1/ 2 )+C) as the edge of a plate is approached along a
radial direction (r-0).* The number e depends on N and p, the ratio of the density in region
C to that in region A (Fig. 1). Its exact form is derived in App. C and there we also show
that lEl A 1/6. This full remark is the edge condition.

b. 4 and V 4 are continuous in each subregion, and the pressure and velocity are con-
tinuous across the z = 0 interface.

c. Apart from the incident wave, 4 represents outgoing waves as z - ±oo.

(In the analogous electromagnetic problem, 4 is the single component of the electric field
which is in the y direction. The magnetic vector is in the xz plane and is calculated from 4
via Maxwell's equations.)

We have the following wave functions in the various regions. For z >_ 0 (region A), 4
is written as

4'A(x,z) = 4'(x,z) + 4 sc(X,Z) (2.5)

where 4i is the plane wave incident at angle Oi and is given by

4'i(x,z) = exp[ik(aox-0oz)] (2.6)

with ao = sin Oi and go = cos 0i. The scattered wave 4 sc is written as a superposition of plane
waves propagating (or decaying) in the positive z direction as

Osc(X,Z)= E A, exp[ik(cnx+0nz)] (2.7)n= -

where aXn = sin On and

F (1-a2)1/2, a2 < 1
OSn =COS n=

+i(fn-1 )1/2 , a2 > I

The scattering angle o, is given by the grating equation below. Note that the restriction on
On insures that Osc satisfies restriction (c) above. The coefficients An are to be determined.
The scattering coefficient R(x,z) is defined by

R(x,z) = s'sc(x,z)/'i(x,z). (2.8)

*The symbol "0" is the order symbol. The remark 4 = 0(r 1/2 ) as r - 0 means that lim rl1 /24 =

constant * 0. r-0

4
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Since the surface is periodic, so is R. Thus

R(x+2Q,z) = R(x,z)

which, using Eqs. (2.6) and (2.7), implies the grating equation

a, = ao + nA (2.9)

where A = X/22 and n is an integer. For z < 0 and -a < x < a (region B), Q is written as

00 (j7r(x+a) (2.10)

4'Bx -, B1 si 2a /

with

['~ ) 2] 1/2 =
1[ 2ka I 

lj = [( jAt )2_1] 1/2,

(jAt) ]
k 2!

'f2 (iA2)I

(2.11)

where NOB satisfies both Eq. (2.4), at x=±a, and restriction (c) via Eq. (2.11). The parameter
t is equal to 2/a. Also it is convenient to define

pj = j7r/2ka = jAt/2.

For the remaining values of x, 4B is given below. For z < 0 and a < x < 2V-a (region C), 4
is written as

= C ( Jlrx-a) eikniz
4C('cxZ) = 2Z C1 sin\ 222 e) kj

j=1
(2.12)

with

[N2 - Jr ) 2] 1/2 { N2 - (U)2}11/2 (jU)2< N 2

+i[(jU)2 -N 2 ]11/2 (jU)2>N2

(2.13)

where

_____ At
k(2k-2a)- 2(t-1) 

(2.14)

It is easily seen that 4'c satisfies Eq. (2.4) at x = a andx = 2Q-a. Equation (2.13) insures that
restriction (c) is satisfied. It is also convenient to define uj -rjLN=l .

5
:;F:
11-:1
11-

"e)

......

111111
1��l

( jAt ) 2 �' 1
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I,.

Both 4'B and 4'c are periodic functions (up to a phase lag term) so that, to determine
these functions for values of x other than those above, we write for both 4B and 4'c

[4 'B,C(x,z) exp(-iktox)]x=x1+2mQ = [4B,c(xz) exp(-ikoaox)]x=xl

wherem = 0,+1,+2,...,-a xl 6afor u'B' anda xl< 62-a for c. Thetermexp(-ikoaox)
yields the phase lag term and expresses the phase delay (or advance) of the plane wave as it
strikes two different surface points.

An and Bm Equations

The various unknown amplitude coefficients will be shown to be related via sets of
linear equations. These follow from the continuity of pressure and normal velocity across
the z = 0 interface. In terms of the velocity potential 4, the pressure p and the normal
velocity v, are given by

p = H-ipo 0 and vn =-a4 /an (2.15)

where po is the density in the particular region and n is the normal. We are assuming that
PA = PB and Pc = PPA where p is a number. To relate An and Bm, use these continuity
conditions which, for -a 6 x 6 a, are given by

OAA(X,0) = 4 'B(X,O)
and (2.16)

- (x,0) = 4B (x0).az az

Substituting 4 A and NOB in Eq. (2.16), multiplying the resulting equations by sin(mir(x+a)/2a),
and integrating on x from -a to a yields, after manipulation, the set of equations

0 AnInm _ Iomi 2irqm { Bm
__ -0 f3~q~ f 0+qrn+ At~ 1 ~ -0 (2.17)n=-o gn+qm O0Tqm Atpm ° 

where the upper sign is to be read with Bm of the last term, and the lower sign with 0. Inm
is given by

Inm = e-riunlAt - ()m e7rian/IAt (2.18)

Equations (2.17) relate theAn and Bm amplitudes as desired.

An and Cm Equations

To relate An and Cm, use continuity of pressure and velocity in region C where
a 6 x 6 22-a, which gives



NRL REPORT 7320

4 AA(XO)=P 4'c(x,0)

and

7 :2:

1A-"
'1_.'

(2.19) I.,

II.'

aOA acFT (X0) =az (x,0).

Substituting 4 'A and 4c in Eq. (2.19), multiplying the resulting equations by
sin[mir(x-a)/(2Q-2a)], and integrating on x from a to 2Q-a yields the sets of equations

and

00 (An+6nO)Jnm p7r(t-1)Cm - 0
n=- n2_ u Atmu

00 (An-n5)fnJnm r(l)mCm = 0
n=-M n2_- Atmu

Jnm = eg7in/At (1-(-)me7rian/u)

where

(2.20)

(2.21)

(2.22)

and 5nO is the Kronecker delta function (equal to 1 for n = 0, and equal to 0 otherwise).
Next, multiply Eq. (2.20) by um. The resulting equation is successively added to and sub-
tracted from Eq. (2.21). These operations yield the sets of equations

AnJnm - JOm +(rm-pum)7r(t-)Cm
n=-° 3n-Um W3 +Um Atmu = 0

(2.23)

and

AnJnm_ JOm
n=-0 0 in+Um P00Um

+(rm +pum )7r(t-1)Cm = 0.
Atmu

0m = r+pum (2.25)
rm +PUnm

Multiply Eq. (2.24) by um and subtract Eq. (2.23) from the resulting equation, which yields

n=-°° ( gn+Um 13nUm go-U. l0+Um ) °

We shall use Eqs. (2.26) and (2.24) as the two sets of linear equations for the A and C
regions.

Define

(2.24)

(2.26)
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... -x

*

* ~~~~~0

Fig. 2-Contour B+C used with Green's
theorem to derive the flux relation. The
inward normal is n.

Flux Conservation

In order to calculate a relation which expresses the conservation of flux across the
z = 0 interface (i.e., to calculate the reflection and transmission coefficients for the surface),
consider integrals of the form

(2.27)I dypo4*(x,z) an4'(XZ) = 0
B+C

where 4* is the complex conjugate of 4, n is the inward normal to the closed contour
B+C = 1,2,...,12,1 illustrated in Fig. 2, and f ag f(ag)-(af)g. Since both 4 and 4 * satisfy
the same Helmholtz equation (k in each region is real) in the region of integration, the right-
hand side of Eq. (2.27) vanishes. This follows from Green's theorem. It is easily seen that
the only contributions to Eq. (2.27) arise from the paths 12, 56, and 9 10 in the B+C con-
tour. The sum of integrals along 23 and 12 1 vanish due to the periodicity in 4. Integrals
along 45 and 67 vanish since OB = 0 along these paths, and 89 and 10 11 vanish since
0c = 0. Integrals along the three semicircles 34, 78 and 11 12 can be shown to vanish as
their radii shrink to zero. This follows from the edge condition. Substituting appropriate
values of 4 in Eq. (2.27) and carrying out the integrals and evaluating the contributing con-
tours at z = 0 yields the form

R +T= 1 (2.28)

for Eq. (2.27), where the reflection coefficient R is given by

(2.29)R = L {AnI 12 (3n /30 ) =ZRn
n n

with the sum running over all n = 0,+1,..., such that f3n is real (i.e., over real scattering orders).
The Rn are obviously defined and are the individual spectral reflection coefficients. The

;~ 18

I ' 'I

I" 1

Z

I 0
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transmission coefficient T is given by the sum of the two transmission coefficients TB and

TC corresponding to transmission into regions B and C, respectively,

T = TB + TC (2.30)

where

TB =IBm 12(qm /2too) (2.31)
m

and

TC = W~-1) lCm 12 (rm /2too) (2.32)
m

with the sums running over m = 1,2,..., such that qm and rm are real (i.e., real propagating

orders in the plate regions). Similarly, individual spectral transmission coefficients can be

defined as

TBm = IBm 12 (qm /2t/o ) (2.33)

and
Tcm = p(t_1)ICm 12(rm /2tgo). (2.34)

Note that for t = 1, Tc = 0. This is because the region C is not present for t = 1.

3. DISCUSSION OF THE EQUATIONS

We wish to solve Eqs. (2.17), (2.24), and (2.26) for the amplitude coefficients A,,

B., and Cm by matching the equations to the residue series of certain meromorphic func-

tions. It is not possible to do this for the most general of the parameters ao and t. Instead,

in this section we present two special cases for the soft boundary condition we have been

using. First, the case of arbitrary ao and t = 1 is solved; then the case of normal incidence

(oao = 0) and arbitrary t (and arbitrary N and p) is solved.

Arbitrary oxo and t = 1

The first case is for a plane wave incident at an arbitrary angle on a surface. The surface

consists of periodically spaced, semi-infinite, infinitesimally thin parallel plates. It is a classic

diffraction problem solved by Carlson and Heins (1) using the Wiener-Hopf method, and by

Berz (2) and Whitehead (3) using the residue calculus method (RCM). The two methods are

related (5). The method we present below is slightly different from that of Berz, but the

amplitudes we calculate can be shown to be equivalent. It should also be noted that our

geometry differs from that of Berz.

For t = 1, Eqs. (2.17), (2.24), and (2.26) simplify considerably. Recall that um is just

rm at N = 1. Equations (2.13) and (2.14) indicate that for t = 1, um is infinite. Hence,

Eqs. (2.24) and (2.26) are identically satisfied. Using the grating equation, Eq. (2.9), and

t = 1 in Eq. (2.18) yields
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Inmlt=1 = (-)no mI*

Thus, Iom can be factored out of the sums in Eqs. (2.17). The latter in turn can thus be l
written as

02, (-)nAn 1 +2irqm 1 1l Bm~-(31
n=-° 0t±qm rIO+mq Ap Om {o I =0

Now construct a meromorphic function f(w) which is assumed to have the following
properties:

a. f(w) has simple poles at W = On (n = 0,±1,±2,...) and a simple pole at c = 1o .

b. f(co) has simple zeroes at c = q. (m = 1,2,3,...).

c. f(co) = O(W-3I2) as IwI - °°

d. The wave function 4 = 0(r112) as a plate edge is approached (r is the radial distance
from an edge), or, equivalently, a4/ar = 0(r-1/ 2) as r - 0. The connection of this edge be-
havior and the asymptotic behavior of f(co) will be demonstrated. The derivation of the
edge condition is given in App. B and C (e = 0).

Consider integrals of the form

.1 f(w)dw (3.2)
2iri Co ±qm

where the closed contour C, is chosen to enclose the points w = ±qm (for m < s), fn (for
n = 0,+1,...,±s), and 3o0. The contour is illustrated in Fig. 3. Application of the residue
theorem yields

1 f(w) dwo= Es r(fn) r(-0o) ft-qm)1 (33)

27ri J c±qm n=-s gn±qm SOTqm 0

where r(fn) is the residue of f(co) at C- = On. As s approaches infinity, C, approaches an
infinite contour, and the integrals on the left-hand side of Eq. (3.3) approach zero because
of property (c) of f(w). The resulting residue series are thus given by

co r(fn) r(-0o+) f lq =
2Z - 1 . (3.4)

n=_0 0
On±q. foTqm 0 j

Equations (3.4) are similar to Eqs. (3.1) if we make the identifications

(-)nAn = r(On) (3.5)

1 = r(-fo) (3.6)
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Bm = 2pm ImIt(-qm).

11

(3.7)

Thus the amplitudes are known via Eqs. (3.5) and (3.7) once the function f(W) is known.
Equation (3.6) will be used in the construction of f(co).

q $+I

xj0 

Fig. 3-The contour of integration Cs for
the residue calculus technique discussed
in Sec. 3 of this report. A possible con-
figuration of the poles O3n and 3o0 and
points ±qm is shown.

In order to construct f(w), consider the following infinite products, which are defined
and discussed in App. A [Eqs. (A.6)-(A.8)]:

00

i (wj) = H (1-/0n)(9n/inA)ew/inA
n=1

00

12 (wi,0) = I7 (1-w/f-n)(fl-n/inA)ew/inA
n=1

00

l(wq) = (1-w/qM )(2q. /imA)e 2 ,/imA
m=1

(A.6)

(A.7)

(A.8)

(The latter product is actually Eq. (A.8) with t =-1.) Using these products, and the defini-
tion 1112(co,) Hi1 (wfl)fI 2 (w,o), an f(w) satisfying properties (a) and (b) can be written as

fAW) - g(w) 2 l( q) (3.8)

IGs+,

>-qs+ I



12 JOHN A. DeSANTO

with g(w) being an entire function which will be determined. Using the asymptotic proper-
ties of the infinite products found in App. A, it can be shown, via Eq. (3.8), that as co -o
for -3ir/2 < arg(w) < 7r/2,

I- 

f(W) ; g(W) W-3/2 eicoH (3.9)

where H = (2 In 2)/A and some constant terms have been absorbed into g(o). The domain
containing arg(w) = 7r/2 can be included (see App. A) and doesn't alter the choice of the
entire function g(w) given by

g(co) = (go + gwo)eicoH. (3.10)

Using Eqs. (3.9) and (3.10) we find that property (c) of f(w) is thus satisfied if g1 = 0. In
fact, f(w) vanishes algebraically as jwi -A -. It will be shown that if g1 =A 0, al/ar will be-
have like r-3 /2 near a plate edge. This is too singular (6). Hence g1 = 0 by the edge condi-
tion, and, using Eq. (3.6) to calculate go, f(co) can be written as

f(ci) = f2 l1(ciq) l1-2(-3 000) eiH(w+go) (3.11)

In order to calculate A, via Eqs. (3.5) and (3.11), it is necessary to know

L - lim (n (an)) (n =A 0).

Using Eq. (A.31) we can write

[1112(w43)] 1 = fl1 2 (-W,3) (W2 -320) (7r/A)2

sin(7r(a0Veo+cj)/A) sin(7r(ao-/1-cj)/A)

which exposes the poles via the sine factor. The residue calculation is now straightforward
and yields

L orn (a2 -a 2)Ih 2 (i30 4f)
1, Ean ( o an~n2fn3 (3.12)

AO, sin(27rt 0 /A)

From Eq. (A.31) we can also write

H12 (/0) - sin(27ro 0/A) [H12(G00)V-1. (3.13)
(27rat0 /A)

Using Eqs. (3.5), (3.11), (3.12), and (3.13), An can thus be written as

An = (-.)n+l o1 n -H12 (Q0 ,) rJ(On0,q) eiH(0n+0o) . (3.14)
U 0f 0 n 17112(/3O3 1l(-f30 ,q)
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Note that the amplitude is not singular when either ao or j, vanishes. For Q0 = 0 there is a
zero in the numerator which arises from the fact that there is an integer m = 2n such that
qm = On. A zero also arises from I112 when On = 0. (An explicit form for An when Uo = 0
is given in the following subsection on the normal incidence case.)

In order to check property (d), write iA from Eq. (2.5) in polar coordinates (x - a =
r sinO ra, and z = r cosO =_r) about the edge x = a, z = 0. The radial derivative of 4i is
bounded asr - 0. The radial derivative of 4', is, from Eq. (2.7),

aSC= ik 01 A (aea+/l3)eikr(ana+3n)+ikqna.
ar n=-oo

(3.15)

The sum in Eq. (3.15) can be bounded above and below as

_Y' < 1 ;SW<
ik ar 1 (3.16)

where X is defined by

00

E-E IAn1UnU+Onfle-k4 lnm(n),
n=-0 0

(3.17)

and Im means "imaginary part of." To show that f = 0(r-1/ 2 ) as r - 0, break X up into a
sum for n > 1 (Y+), n < -1 (1-), and n = 0 (which is bounded as r - 0). For n large,
An = 0(n- 31 2 ) from Eq. (3.14) and 01n z nA, On ;3 ijnIA so that, up to a bounded function,
I+, e.g., behaves like the sum

00 e-k1Anr

L, + n=1 n1/2 
(3.18)

Next, .+ is bounded above and below by

co0 e-(kf3Ar)n

J1 /2 +

00 e(ko3Ar)n

J0 n1/2 dn.

The integral on the right-hand side of Eq. (3.19) is known (7) in terms of gamma functions
as

00 e(kWlAr)) dn = r(1/2)

nf 1 2 (koAr)f/ 2
(3.20)

The integral on the left-hand side of Eq. (3.19) can be written as the integral from 0 to -
[given by Eq. (3.20)] minus the integral from 0 to 1. The exponential in the latter integral
can be expanded for small r and yields a bounded result as r - 0. Hence as r - 0, .+ =
0(r-1/ 2) by Eq. (3.20), and thus 2+ = 0(r-1/ 2 ) also. Similar results can be found for Y-.

(3.19)
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Hence E = 0(r-1/ 2 ) as r - 0 and, by Eq. (3.16), a 1,8 /ar = 0(r-1/ 2 ) as r - 0, thus completing
the proof. By a similar analysis it can easily be seen that if g1 = 0, a3i8 /ar = 0(r-3/2) as
r - 0, which is too singular.

For completeness, we also write the value of Bm from Eqs. (3.7) and (3.11) as

Bm = ApmIoIom H(-qmq) 1112( 3O,1) WiH[o-qm) (3.21)
7m q qm(02-q2) rl(-30,q) H12(-qm ,)

with Iom given by Eq. (2.21) with t = 1.

Finally, the flux conservation relation of Sec. 2.3 becomes, for t = 1,

E IAnl2 (3n// 0 )+ E1 IBm12 (qm/2g0)=1, (3.22)
n m

the first term being the reflection coefficient and the second term the transmission coefficient.
The sums are over those n and m such that j3 and qm are real.

Normal Incidence (cvo = 0) and t # 1

The second case is for normal incidence on arbitrarily thick plates (t # 1) filled with an
arbitrary inhomogeneity of wavenumber N and density p. For cao = 0, Eqs. (2.17), (2.24),
and (2.26) again simplify considerably. Since the incident field and the geometry of the
problem (see Fig. 1) are symmetric about the x = 0 plane, we have A, = A-,. Also n =
/3-, since 'ao = 0. The sums in Eqs. (2.17) can thus be written as

AnInm A 0I 0m + 0 An(Inm+I-nm) (3.23
nt0--0 ± /+q± m 0-qm n-1 gn-qm

From Eq. (2.18) it follows that, for 'ao = 0,

Inm + I-nm = 2 cos(7rn/t) (1-(-)m) = 2 cos(7rn/t) IOin (3.24)

Using Eqs. (3.23) and (3.24), Eqs. (2.17) become

/0 Anecos(7rn/t') I 1 2 7rqm Bin 1 (325
(1-(--)m) ( ,o n + 1+qm) + Atpm 0 ° 0 (3.25)

where e0 = land en = 2 (n > 0). Thus for m even

Bm = 0 (m even), (3.26)

and for m odd, Eqs. (3.25) become
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00 Anecos(7rn/t) + 1rqm f Bm l =

n=O /n±q 1mqm Atpm l 0 {

Similarly, from Eq. (2.22), for ao = 0,

Jnm + J-nm = 2cos(7rn/t) (1-(-)m ) = 2 cos(7rn/t) Jom .

15 :2:
I-.)
I]

(3.27)
( -32
l'-l

(3.28)

Using Eq. (3.28), Eqs. (2.26) and (2.24) can be rewritten, for m odd, as

00 am/ am 1 \

E AnEn cos(7rn/t) ( 1 ) _ -m +_ in = 0
n=O ( /n+Um un->m \l-Um 1+Um 

21 Anen cos(7rn/t) I 7r

n0 /n+ui loum 4mu2 (ri+pum)Cm = 0.

(3.29)

(3.30)

For m even, Eq. (2.26) is identically satisfied and Eq. (2.24) implies that

Cm = 0 (m even). (3.31)

These equations have been reduced to a form similar to thke linear equations arising in the
problem of an inhomogeneously filled bifurcated waveguide as discussed by Mittra et al. (4),
who also gave the modification of the residue calculus method necessary to solve the
equations.

Consider the meromorphic function F(c) with the following five properties:

a. simple poles at co=o, (n = 1,2,...) and c±=± 00=±,

b. simple zeroes at co = qm (m = 1,3,5,...),

c. simple zeroes at co = ui (m = 1,3,5,...), where the u'i are shifted an amount 5m
from um

am = Um + 5m.

The 5m shifts are calculated via an iteration procedure from the functional relation

am F(-um ) = F(um) (m = 1,3,5, .... ). (3.32)

In particular, the asymptotic value of these shifts

6= lim 5m
Min0 0

and
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is important in properties (d) and (e) below. It is shown in App. C that I-.

e = 6/2iu = 7f 1 sin7 1 (u/2)

where a = lim am,. Thus a specific value of 6 is known in terms of the parameters A, t, N,
mi"00

and p of the problem.

d. F(w) = O(-(3/2)-e) as 1col - o, and

e. = 0(r(1/2)+e) and an/ar = 0(r(1 /2)+E) as an edge is approached. This is the edge
behavior and depends on N and p through e (see App. C).

Integrals of the form

1 fC F(co ) d,
2iri C w2qm

where C is a closed contour at infinity, yield residue series

00 R (/n) R(-1) + { F(-qm) i(333)
n2O n-±qm =q m 0(.3

where R(/) is the residue of F(co) at co = /. These equations are similar to Eqs. (3.27) if
we identify

Anencos(7rn/t) = R(On), (3.34)

1 = R(-1), (3.35)
and

Bm = Atpm F(-qm) (m odd). (3.36)

Integrals of the form

1 JC F(w) ( (um _du )dw

yield residue series similar to Eq. (3.29) if we use Eqs. (3.32), (3.34), and (3.35). Finally,
integrals of the form

1 f F(c) do
27ri +co+um

yield residue series similar to Eq. (3.30) if we identify
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4mu2

r(r+pu)F-u) (m odd). (3.37)

The function F(co) satisfying properties (a), (b), and (c) can be written as

F(co) =G(co) rlo(w,q)Ho(co,u') (3.38)

where G(co) is an entire function to be determined, [Ij (w,/3) is given by Eq. (A.6) and is
used to satisfy property (a), no (coq) is given by Eq. (A.10) and is used to satisfy (b), and
Ho(co,u') is given by Eq. (A.25) and is used to satisfy property (c). All the products are with
ao = 0. The asymptotic properties of these products (see App. A) yield, as 1coI -e - for
-37r/2 < arg(c) < 7r/2 (where arg(co) = 7r/2 can be included as in the previous section,

F(co) G(w) C-(3/ 2 )-e edictL (3.39)

where

e = 6/2iu

and

L = [2t ln(2)+(t-1) ln(t-1)-t ln(t)] /At (3.40)

and 6 is defined in property (c). F(co) - 0 as IclI -* -c if we choose the entire function as

G(c) = (Go+G co)eiWL (3.41)

where Go and G1 are constants. It can be shown by methods similar to those used in the
previous section that if G1 :* 0, a t/ar = 0(r-(3/2)+E) as r -> 0 (r is the distance to an edge).
This result is too singular. Similarly, it can be shown that if G1 = 0, a l/ar = 0(r-(1 /2 )+e) as
r - 0. This is the usual edge condition. Thus, properties (d) and (e) are shown to hold, as
well as the relationship between properties (c), (d), and (e).

Setting G1 = 0 in Eq. (3.41) and using Eq. (3.35) to calculate Go yields

2eiL(w+l) rl 0 (co,q) 110 (c,u') I1(- 1,0)

F(co) = 1-co2 fol(-1,q) Ho1(-1,u') H11(co)

Using the symmetry property

[Ili (Ca,3)] f 1= i I (-P,/) (3.43)sin(ir,/--/A)

(which follows from Eq. (A.31) for ao = 0), the residue R(/3) can easily be calculated using
Eq. (3.42). Using Eq. (3.43) for co = -1 in the result yields, with Eq. (3.34),
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()n+leiL(1+0_n) Ho (/3 ,q) lo0(0n3,u') Ill(f9n.0/)
An= ncos(7rn/t) rIo(-1,q)HIo(-1,u') fl(1,0)*

Finally, use of the symmetry condition Eq. (A.30) yields

(_)n+1eiL(1+0n) 1-0(1 ,q) Ho(Onu') H1i( - n34)
O3n lo (-&n,q) Hlo(-l,u') 1I-(l,/) (3.44)

Since Co = 0, it is easily seen from Eq. (3.44) that An = A-n. Also, using Eqs. (3.36), (3.37),
and (3.42) we can write for (m odd)

Bm 2At HO (-qnqq) HO (-qm>u') 1- (-1,) eiL(1-qm) (3.45)
7rPiqm no(-1,q) rlo(-l,u') Hij(-qm,/3)

and

Cm 8 rIo(-umq) Io(-u.,u') 1-1(l1a:) eiL( 1-um). (3.46)
7rm_(rm+pum)rl~o(-1,q) rlo(-l,u') rll(-Um,0)(*)

Recall also that B. = Cm= 0 for m even.

In the limit where t = 1, Eq. (3.43) yields

A, ja0 =0 - fl0o/3n,q)rlj(/3 Hn3 e2 i In2(1+/3,) / A. (3.47)
nt=1 On rlo(-lsq )rll (1O)( )

This is the same result as letting aoo = 0 in Eq. (3.14). (The latter derivation is accomplished
by noting that, for ao = 0 and t = 1, H1 (o,/3) = fl2(coA) = l~e(Co,q) where He(co,q) is defined
by Eq. (A.9). Finally, the use of symmetry properties in App. A completes the derivation.)
A similar equality of the Bm amplitudes can be shown to hold by setting t = 1 in Eq. (3.45)
or ao = 0 in Eq. (3.21). For t = 1, Cm of course is zero. This follows directly from
Eq. (3.46).

Finally we must calculate the 5m shifts from property (c). The procedure is due to
Mittra et al (4). Substituting Eq. (3.42) into Eq. (3.32) and manipulating the result yields

Flo(uru') = am o (-unq)rll(um,) e-2 iLum. (3.48)
n~o (-UM ,U ) rlo (um ,q)rll (-um X3)

Using Eq. (A.25) and the definition u' = um +6m from property (c) (recall that m is odd),
the left-hand side (LHS) of Eq. (3.48) can be written as

LHS = n 6
2I i+72n-um e-2ium/[(2n-1)u]. (3.49)

n=1 62n-i +u2n-1 +um

Factoring the product in Eq. (3.49), substituting the result into Eq. (3.48), and rearranging
terms yields

18
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I=>,

6(j+i) n1i6(-1+u)e- 2ium/mu J 62n-1 U2n-1im e-2ium/(2n-1)u

5m(j+i)+2um ni 62n-1 +U2fl +u m

RHS X H ( 2n-i +U2n- +um 2iun /(2n-1)u (3.50)
n 5i~ 6j2.i+u2n-1iumeiin(nu

where RHS stands for the right-hand side of Eq. (3.48) and 2ni-1 = m. Equation (3.50)
is to be used as an iterative equation, and thus superscripts have been added to the 5m
terms. The procedure is as follows:

1. For large m (m odd), 5m - 6. This is assumed to be the zeroth iteration and is
substituted into the right-hand side of Eq. (3.50).

2. First iterations 6(1) 61), 5(1) are calculated sequentially up to an m = X
1. 3 M

such that I6-65 2) , 6-6 144 ,..., are zero to any desired accuracy. These latter terms,

M+ 2, ..., are set equal to 6 throughout successive iterations. Further iterations are calcu-
latedonly onthe iteration set 6(1), 6(1),..., 6(1)

1 3 M

3. Higher iterations are calculated until Eq. (3.32) is satisfied to any desired
accuracy.

This iterative procedure was used by both Mittra et al. (4) and the present author (8) and
found to be rapidly converging. The chief advantage of the method is that it is not neces-
say to use matrix inversion to solve our original sets of linear equations. Specific numerical
results for this problem will be presented elsewhere.

4. SUMMARY

It has been shown how to analytically solve for the scattered field when a plane wave is
normally incident on a one-dimensional periodic corrugated surface consisting of alternate
free and inhomogeneously filled parallel plates having soft boundary conditions. The solu-
tion resulted from the use of complex function techniques and an iterative procedure.
Matrix inversion was avoided and, save for the normal incidence, there are no parameter
restrictions. Plane and standing wave amplitude coefficients in the various geometric regions
were expressed as residues or values of a constructed meromorphic function. Edge condi-
tions on the field were derived, explicitly demonstrated, and shown to be related to the
iterative procedure used. Equations (3.44-(3.46) are used to calculate the amplitude
coefficients, and Eqs. (2.29) through (2.34) define the reflection and transmission
coefficients.

There remain the numerical evaluation of the reflection and transmission coefficients
and, using this, a discussion of the anomalies involved in scattering from these grating surfaces.
We also wish to consider this problem with different boundary conditions. All these will be

presented in future publications.
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APPENDIX A
PROPERTIES OF INFINITE PRODUCTS

Define the infinite product H(X) which vanishes at the positive integers as

00

II(co) = 17 (1-co/n)eo/n. (A.1)
n=1

The exponential term is necessary to insure the absolute and uniform convergence of the
product.* The product fl(X) is related to the gamma function I(c) via

Il(X) = -edy/coFc(-w), (A.2)

which follows from Weierstrass's definition of F(co), where y is the Euler-Mascheroni
constant.

The general form for products which vanish at points co = Dm (m = 1,2,3,...), where,
for m large, Dm - imA with A a real positive quantity, is given by

00

rl(cw,D) = 17 (1-ow/Dm)(Din/imA)ew/iinA (A.3)
m=1

00

which is absolutely and uniformly convergent provided that the product LI (Dm/imA) is.
m=1

Dividing Eq. (A.3) term by term by a modified form of Eq. (A.1) given by 1(co/iA), we
easily see that for large co the result is unity, viz.,

rl(co,D) 1 rl(co/iA). (A.4)

Also, relating rl(co/iA) to the gamma function via Eq. (A.2) and using Stirling's approxima-
tion to the gamma function*, it is easily seen that, as 1wIc - - for -37r/2 < arg(co) < 7r/2,

ri(w/iA) -,: e-iri/4 (/\/27rwJ)1/2 e(,y+1ncw-hA-1+7ri/2)C0/iA. (A.5)

The domain arg(co) = 7r/2 is discussed below.

*Whittaker, E.T., and Watson, G.N., "A Course of Modern Analysis, " Cambridge:Cambridge Univ. Press,
4th ed., reprinted, 1962).

21
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Some useful infinite products include the product which vanishes at co = n (n =
1,2,3,...)

00

rll(co,O) = 17 (1-xc//n)(/n/inA)ew/inA, (A.6)
n=l

the product which vanishes at co = n (n = -1,-2,-3,...)

-00

r12(Co,/) 17 (1-co//n)(/n/injA)ew/iInlA
n=-1

00

= 17 (1-cJ//-n)(/-n/inA)eco/inA, (A.7)
n=l

the product which vanishes at c = qm (m = 1,2,3,...)

rl(ci,q) = 17 (1-co/q.)(2qm/imAt)e 2 co/imAt, (A.8)
m=1

the product which vanishes at co = qm (m = 2,4,6,...,m even)

00

-e(wq)= 17 (1-c/q2m )(q2m /imAt)ew/limAt, (A.9)
m=1

and the product which vanishes at c = qm (m = 1,3,5,..., m odd)

HO(cq) 17[L(,q) - l (1-co/q2m-l)(2q2m-l/i(2m-1)At)
Ie (co,q)M i= 1

X e 2w/i(2m-1)At. (A. 10)

Note that for oG 4# 0 the products fl, (co,/) and 112(co,g) don't separately converge since the
00

products 17 (3±n /inA) don't converge. The latter is true because of the oz0 factor in /3±n.

However, 12(co,) = 111 (o,/)r12 (co,/) does converge since 17 (-n/n/n 2 A 2 ) does.
n=l

Following the derivation of Eq. (A.4) we write, for large c,

Ill (co,/) 12 (co,/) 11r(co/iA) (A.11)

II(cj,q) rl(2co/iAt) (A.12)

(A.13)rl,(coq) - rl(w/iAt)
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IIo (co0q) = l(coq) a,(2w/iAt)HO (cj1q) c= q) _1(o/ t (A.14)

Applying Eq. (A.5) to the right-hand sides of Eqs. (A.11), (A.12), and (A.14) yields, as
1Ic cc,-37r/2 < arg(co) < T7/2

rll(J,O) t~ rI2(0,0) zz e-7ri/4(A/27rw)1/2e(,y+ln(ci/A)-1+Tri/2)(W/iA) (A.15)

ri(w,q) - e-ri/ 4 (At/47rc) 1 /2e(y+ln(2 w/At)-1+7ri/2)(2w/iAt) (A.16)

rl(o(,q) t~ 2-l12e('y+ln(4cj/At)- 1+7ri/2)(oliAt). (A.17)

A further useful product is the one which vanishes at co = u'M = um+5m for m = 1,3,5,....
In order to construct this product and find its asymptotic properties, first write the product
and find its asymptotic properties, first write the product which vanishes at co = UM
uM+ 6 m for m = 1,2,3,..., which is given by

00

[I(w,u') = 17 (1-co/u')[um/(imu+5)]ew/imu (A.18)
m =1

where, as m ,um - imu and 6m -- 6. Following Eq. (A.4), rl(co,u') is, for large c,
asymptotic to the product

11(c,b) = n (1- +S) ecJ/imu (A.19)

which can be related to the gamma function* by

H(co,6) = r(1-si5u)e-iY/u (A.20)

Using the relation (Ref. 7)

F(Z+T)

10 zTl=(z) (A.21)

in Eq. (A.20) and combining the above results, we see that, for large co and -3T'/2 < arg(co) <
ir/2,

(,U )t H(@S) t(2T'U) 1/2(i/u) l+iS/uF(l-i5/u)e7Ti/4

X (>^))-(112)+iblue('y+ln(wl/u)-1+7ril2)(wliu) (A.22)

*See previous footnote.
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where we have again used Stirling's approximation on the remaining gamma function. The l
product which vanishes at co = ur = um+5m for m even (m = 2,4,6, .... ) is given by

00 f 
He(,UX') = 17 (1-/[u'2/)([u2m/(2imu++)]6e]2imu. (A.23) go l

in=1

Its asymptotic value can be found directly from Eq. (A.22) by replacing u by 2u, and for
large co is

l-e(WoU') t (4ru)-lf 2 (i/2u)-l+(i8f2u)F(1-i6/2u)elTif4

X (co)-(1/2)+i6 /2ue(y+lfn(f/2u)-1+7ri/2)(co/2iu). (A.24)

Using the above results we can write the product which vanishes at X = = um +6m for
m odd (m = 1,3,5,...) as

lo(cU') = 1(Co7u) = l (1-co/u2m-j) u2mu /[(2m-1)iu+6j1
le (Co,u') rn=1 ~2 n l u

X ec0f[(2m-1)iu] (A.25)

whose asymptotic value follows from Eqs. (A.22) and (A.24) and is, for I1X -c and
-37r/2 < arg(c) < 17r/2,

1-10 ( u') ;t- 2-(1/2)+i8 /2u (ilu)M /2ur(1-5/u)r-1(1-i5/2u)

X (CO)ibf2ue(,y+ln(2Lo/u)-l+rif2)(Wf2ui) (A.26)

Note that the value of 6 is the sole factor in the algebraic part of the asymptotic behavior
of flo(co,u'). Thus shifting zeroes in an infinite product has the effect of changing the
asymptotic algebraic behavior of the product. The connection of this result and the be-
havior of fields near an edge is discussed in App. C.

When evaluating residues, it is useful to have certain symmetry properties of the
products. There can be derived from the relation

H(co)l-(-co) = I7 [1-(co/n)2] = sin(7rco)/(7rc) (A.27)
n=1

which follows from the duplication formula of the gamma function and from Eq. (A.2).
The following symmetry properties can be derived in a straightforward way by multiplying
the definitions of the products involved and using Eq. (A.27):

HI(co,q)rI(-co,q) = sin(2-r 1-co2 /At)/(2ir 1-co2 /At) (A.28)

Ie (co,q)He(-co,q) = sin(7r 1-CO2/At)/(7ri jl- 2 /At) (A.29)



NRL REPORT 7320 25

H10 (w,q)11 0 (-w,q) = cos(ir 1-c 2 /At) (A.30)

1 2 (C(,93)II1 2 (-CJ,9) = sin(ir(a0 -)/A)sin( (a0G0 /1-co 2 )/A) (A.31)
(7r(ao+N/1:~co,2)/A)(7r(ao-NVi~cW)/A) T

The asymptotic properties of the infinite products in the region arg(co) = ir/2 can be
found from these symmetry properties. For example, to find the asymptotic expansion of
fl(co,q) for arg(co) = 7r/2, write Eq. (A.29) as

H(wq) (2nr1 27/At)11(-c q) (A.32)

and find the asymptotic value of rI(-co,q). For large co

H(-co,q) -H(-2w/iAt). (A.33)

The latter product is related to the gamma function by using Eq. (A.2), and then applying
Stirling's approximation to the gamma function. Stirling's approximation has its domain of
validity rotated an angle irdue to the minus sign in the product. Using Eq. (A.32) the result
is, for I1o cc and -ir/2 < arg(co) < 37r/2,

rl(cj,q) :t~ sin(27rN//;Xw/At) (At/7r,)l1/2e-7ri/4

X e(,y+ln(2cofAt)-1-7rif2) (2cofiAt) (A.34)

In particular, the expansion is valid for arg(co) = 7r/2. Expansions of the other products in
this region can be easily written down using the above procedure. When they are substituted
into the meromorphic functions it can be easily seen that they don't affect the choices of
the various entire functions.



APPENDIX B
DERIVATION OF THE EDGE CONDITION

We wish to derive the behavior of the velocity potential or field 4 in the neighborhood
of a wedge of angle 01 for the case of a wedge with a soft boundary. We consider no density
or wavenumber variations. The geometry is illustrated in Fig. B1. We must solve the Helm-
holtz equation

(V2 + k 2 )0 = 0 (B.1)

within a boundary in the neighborhood of the wedge. The solution of Eq. (B.1) can be sepa-
rated in polar coordinates (ra) as

~(ro) = R(r) 4)(q) (B.2)

and when substituted back into Eq. (B.1) yields the equations

and

d2R l 1dR+ - 2R=0
dr2 r dr r2

d2 + S = 0

where s2 is a separation constant. The equations have solutions

R(r) = A Js(kr) + B N5 (kr)

and

4(I) = C sin(so) + D cos(so)

where J, and N, are respectively, the Bessel and Neumann functions of order s, and A, B, C,
and D are constants.

Fig. R1-The neighborhood of a wedge of angle 01 with polar coordinates r and q.
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The soft boundary condition is given by

4i(r,O) = 4/(r,oj) = 0 (B.7) :t
IrF

which implies that D = 0 and s = nir/b1, where n is any integer. The full solution of Eq.
(B.1) can thus be written

00

4i(r,o) = 2 sin(nmro/01) [CnJni7rj0(kr) +DnNnfr/01(kr)] (B.8)
n=-0°

where Cn and Dn are now constants. An additional result independent of 0 must be satis-
fied and is given by

lim i(r,o) = 0 (B.9)
r-O

which implies that Dn = 0 (all n) and Cn = 0 (n = -1,-2,...). Thus Eq. (B.8) becomes

CO

(rq) = 21 Cnsin(n7T5/ol)JnIfq1i(kr). (B.10)
n=1

Using properties of Bessel functions it is easily seen that, as r -e 0,

/(ro) = 0(r1T/01)

which follows from the leading term (n = 1) in the series. For an infinitely sharp edge
('1 = 27r), 4 = 0(r /2 ) and a 4,/ar = 0(r- 1/2). This was the case for arbitrary ao in Sec. 3,

and also for ao = 0, N finite, and p = 1 in Sec. 3. For N = °° (impenetrably thick plate,
01 = 37r/2), 0 = 0(r 2 /3 ) and a 4/ar = 0(r-1/ 3 ). This was also a special case in Sec. 3 (Uo = 0)

for c = 1/6.

Note in particular that as long as N is finite and p = 1, the geometric edge is infinitely
sharp (41 = 27r). Finally note that we have shown that the edge conditions follow from the
boundary conditions.



APPENDIX C
EDGE BEHAVIOR AND ZERO SHIFTS

In App. A we pointed out the asymptotic behavior of infinite products which depend
on shifted zeros. The corresponding behavior of the function F(co) was pointed out in Eq.
(3.39). The edge conditions were derived in App. B for N finite (infinitely sharp edge) and
N infinite (impenetrably thick plate and right-angle wedge), and it was shown in Sec. 3
(arbitrary ao) how the radial derivative of a field 4 explicitly satisfies the edge condition.
There remains the question of tying all this together and showing the how and why of the
choice of 6-the asymptotic value of the 6m zero shifts.

Using Eqs. (3.39) and (3.41) and the fact that G1 = 0, we have, for large co,

F(co) - Goco-( 3 I2 )-E (C.1)

with e = 6/2iu.

From Eq. (3.34) and the remark that the residue function has the same asymptotic
algebraic behavior as the function (the proof of this remark is in App. D), we see that for
large n

An = 0(n-( 312 )-e) (C.2)

which follows from the fact that, for n large, On - ilnlA.

We wish to show how e is related to the edge behavior by using the 4 A field from Eq.
(2.5). Since the radial derivative of 4i is bounded near an edge, the edge behavior arises
from dis. As in Sec. 3, write ,sc in polar coordinates and take its radial derivative. The
latter is bounded

-E < (ik)- asc/ar < f (3.16)

where

00

Z= 21 IAn Iana+/3n/3Ie krIm(0n). (3.17)
n=-00

Again break I up into three parts: the n = 0 term, and sums from 1 to -c (E+) and -1 to-00
(E ). Using Eq. (C.2) and large n values of an and an, Z+ behaves, up to a bounded func-
tion, like the sum defined by

28
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2+- 1 n (1/2)-ee-k/Anr
n=1

= r(1/2)-e)(krA)-(l1/ 2 )+e

so that, as r -÷ 0, Z+ = 0(r-(1/2)+e). Z_ behaves in a similar way, and the n = 0 term is
bounded. Thus, as r -* 0, by Eq. (3.16) and the fact that 8il/ar is bounded we have

a4JA = O(r-(1/2)+e). (C.5)

Thus it is seen how e is connected to the edge behavior of the fields.

We must next derive a specific value for e in terms of the other parameters of the prob-
lem. This follows from Eq. (3.32) which we write, using Eq. (3.42) and recalling that m is
odd, as

(C

(C

ume-2iLum - ro(-umq) Hl(umi,3) _ rlo(um,u')
no(u.,q) 1j(-um ,3) Ho(-umu')'

(C.6)

Using Eqs. (A.30) and (A.31), the latter with ao = 0 and rI] = 112, the left-hand side (LHS)
of Eq. (C.6) can be written

LHS = me-2i (Hu (- umq) 2
LHS = u e~i~ur Hi (-Urn ,/) /

From App. A we can write, for m large,

rlo(-um~q)t ;( (-2m/IAt) ;:t2-1/2expi( _M (-y1+ln[2m/(t-1)]}

and

Thus Eq. (C.7) is, for m large,

LHS t sin(irmu/A)
cos(7rmu/At) em[y1+In(2i)I

= a sin(m7r/2)e[y- 1+ln(2 rn)]

29 :z:

:~r-

.3)

,.4) ,7

sin(7rmu /A)
(7rmu/A) cos(7rmu/At)

(C.7)

rl, (-umg) ;z:� rl(-mu/A) -z:� (A/27rmu)l,/2exp -Mt (-j-1+ln[mt/2(t-1)j I -
2(t-1)

(C.8)
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where

0, p = 1, Nfinite '
-1, p = °°, N finite

a lim om = 1, p = finite, N = 0c .
M-+0 1-

1-+p P and N are finite

To evaluate the right-hand side (RHS) of Eq. (C.6) first write

RHS I(um>u ) rl,(-um,u')
I=H(-Um,u') Ile(umu')

Substituting explicit forms for these products, we can for example write, for m large,

In [1-m/(n+2e)]em/n
n=1

00

17 [1+m/(n+2e)]e-m/n
n=1

- I(m-2e)
II[-(m+2e)]

(C.l1)

where 2e = 6/iu. Equation (C.11) can be rewritten as

Il(m-2e) _ rl(m-2e) II[-(m-2e)] sin[7r(m-2e)] 1
II[-(m+2e)] 1I[-(m+2e)] H[-(m-2e)] 7r(m-2e) fl[-(m+2e)] If[-(m-2e)]

; 2 sin[7r(m-2e)]e 2 m['-1+ln(m)] (C.12)

where the final form follows for m large. The ratio of IHe products follows by replacing m
by m/2 and e by e/2 in Eq. (C.12). Thus we can write

le(um ,u') : 2sin[7r(m/2-e)]e m [,y-1+ln(m/2)]Heu ,-u ') (C.13)

Using these results, Eq. (C.10) can be written, for large m, as

RHS - 2sin(7rm/2) sin(7re)em[i-l+ln( 2 m)] (C.14)

Combining Eqs. (C.8) and (C.14) yields

0,

\2 1+p/'

p = 1, N finite
p = c, N finite
p = finite, N = - (C.15)

p and N finite

This is the explicit form for e which we presented in the second part of Sec. 3 and which
was associated with the edge condition.

(C.9)

(C.10)

HI(um ,u')
II(-um ,u')
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APPENDIX D
ALGEBRAIC BEHAVIOR OF THE RESIDUE FUNCTION

In Appendix C it was stated that the residue function has the same asymptotic algebraic
behavior as the function. This is proved here. For simplicity we set e = 0. From Eq. (A.5)
for large X (neglecting the exponential behavior) we have

(cof)-1 = O(c 1 /2 ). (D.1)

The algebraic (large m) behavior of the residue function defined by

R(m) = lim [(co-m)/r1(co)] (D.2)
r->m

is found by substituting Eq. (A.27) into Eq. (D.2) to get

R(m) = mirfl(-m) lim [(co-m)/sin(7rco)]
co -> in

= (-)Mmll(-m) (D.3)

and then using Eq. (D.1) on 11(-m) for large m to yield

R(m) = 0(m1 /2 ). (D.4)

This procedure is easily generalized to the full functions f(co) and F(co) and their residues
and thus, e.g., we have from Eqs. (3.5) and (3.9) that, for n large,

An - r(/nj) f(n ) n-3/2 . (D.5)

This completes the proof of the remark.
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